Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 346: 421-433, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35358610

RESUMO

Acute Respiratory Distress Syndrome (ARDS), associated with Covid-19 infections, is characterized by diffuse lung damage, inflammation and alveolar collapse that impairs gas exchange, leading to hypoxemia and patient' mortality rates above 40%. Here, we describe the development and assessment of 100-nm liposomes that are tailored for pulmonary delivery for treating ARDS, as a model for lung diseases. The liposomal lipid composition (primarily DPPC) was optimized to mimic the lung surfactant composition, and the drug loading process of both methylprednisolone (MPS), a steroid, and N-acetyl cysteine (NAC), a mucolytic agent, reached an encapsulation efficiency of 98% and 92%, respectively. In vitro, treating lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages with the liposomes decreased TNFα and nitric oxide (NO) secretion, while NAC increased the penetration of nanoparticles through the mucus. In vivo, we used LPS-induced lung inflammation model to assess the accumulation and therapeutic efficacy of the liposomes in C57BL/6 mice, either by intravenous (IV), endotracheal (ET) or IV plus ET nanoparticles administrations. Using both administration methods, liposomes exhibited an increased accumulation profile in the inflamed lungs over 48 h. Interestingly, while IV-administrated liposomes distributed widely throughout the lung, ET liposomes were present in lungs parenchyma but were not detected at some distal regions of the lungs, possibly due to imperfect airflow regimes. Twenty hours after the different treatments, lungs were assessed for markers of inflammation. We found that the nanoparticle treatment had a superior therapeutic effect compared to free drugs in treating ARDS, reducing inflammation and TNFα, IL-6 and IL-1ß cytokine secretion in bronchoalveolar lavage (BAL), and that the combined treatment, delivering nanoparticles IV and ET simultaneously, had the best outcome of all treatments. Interestingly, also the DPPC lipid component alone played a therapeutic role in reducing inflammatory markers in the lungs. Collectively, we show that therapeutic nanoparticles accumulate in inflamed lungs holding potential for treating lung disorders. SIGNIFICANCE: In this study we compare intravenous versus intratracheal delivery of nanoparticles for treating lung disorders, specifically, acute respiratory distress syndrome (ARDS). By co-loading two medications into lipid nanoparticles, we were able to reduce both inflammation and mucus secretion in the inflamed lungs. Both modes of delivery resulted in high nanoparticle accumulation in the lungs, intravenously administered nanoparticles reached lung endothelial while endotracheal delivery reached lung epithelial. Combining both delivery approaches simultaneously provided the best ARDS treatment outcome.


Assuntos
COVID-19 , Pneumopatias , Síndrome do Desconforto Respiratório , Acetilcisteína/farmacologia , Animais , Humanos , Inflamação/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Lipossomos/uso terapêutico , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas , Síndrome do Desconforto Respiratório/tratamento farmacológico , Fator de Necrose Tumoral alfa
2.
Adv Healthc Mater ; 8(10): e1801589, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30963725

RESUMO

Nanoghosts (NGs) are nanovesicles reconstructed from the cytoplasmic membranes of mesenchymal stem cells (MSCs). By retaining MSC membranes, the NGs retain the ability of these cells to home in on multiple tumors, laying the foundations, thereby, for the development of a targeted drug delivery platform. The susceptibility of MSCs to functional changes, following their exposure to cytokines or cancer-derived conditioned-media (CM), presents the opportunity to modify the NGs by conditioning their source cells. This opportunity is investigated by comparing the membrane protein composition and the tumor uptake of NGs derived from naïve MSCs (N-NG) against conditioned NGs made from MSCs pre-treated with conditioned-media (CM-NG) or with a mix of the proinflammatory cytokines TNF-α and IL-1ß (Cyto-NG). CM-NGs are found to be more targeted towards immune cells than Cyto- or N-NGs, while Cyto-NGs are the most tumor-targeted ones, with similar immune-targeting capacity as N-NGs but with a higher affinity towards endothelial cells. Proteomic variations were wider in the CM-NGs, with exceptionally higher levels of ICAM-1 compared to N- and Cyto-NGs. From a translational point of view, the data show that the tumor-targeting ability of the NGs, and possibly that of other MSC-derived extracellular vesicles, can be enhanced by simple conditioning of their source cells.


Assuntos
Membrana Celular/metabolismo , Meios de Cultivo Condicionados/farmacologia , Citocinas/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Animais , Linhagem Celular , Membrana Celular/química , Humanos , Integrinas/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Nus , Nanoestruturas/química , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Proteoma/metabolismo
3.
J Control Release ; 296: 1-13, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30615983

RESUMO

Acidic pH in the tumor microenvironment is associated with cancer metabolism and creates a physiological barrier that prevents from drugs to penetrate cells. Specifically, ionizable weak-base drugs, such as doxorubicin, freely permeate membranes in their uncharged form, however, in the acidic tumor microenvironment these drugs become charged and their cellular permeability is retarded. In this study, 100-nm liposomes loaded with sodium bicarbonate were used as adjuvants to elevate the tumor pH. Combined treatment of triple-negative breast cancer cells (4T1) with doxorubicin and sodium-bicarbonate enhanced drug uptake and increased its anti-cancer activity. In vivo, mice bearing orthotropic 4T1 breast cancer tumors were administered either liposomal or free bicarbonate intravenously. 3.7 ±â€¯0.3% of the injected liposomal dose was detected in the tumor after twenty-four hours, compared to 0.17% ±â€¯0.04% in the group injected free non-liposomal bicarbonate, a 21-fold increase. Analyzing nanoparticle biodistribution within the tumor tissue revealed that 93% of the PEGylated liposomes accumulated in the extracellular matrix, while 7% were detected intracellularly. Mice administered bicarbonate-loaded liposomes reached an intra-tumor pH value of 7.38 ±â€¯0.04. Treating tumors with liposomal bicarbonate combined with a sub-therapeutic dose of doxorubicin achieved an improved therapeutic outcome, compared to mice treated with doxorubicin or bicarbonate alone. Interestingly, analysis of the tumor microenvironment demonstrated an increase in immune cell' population (T-cell, B-cell and macrophages) in tumors treated with liposomal bicarbonate. This study demonstrates that targeting metabolic adjuvants with nanoparticles to the tumor microenvironment can enhance anticancer drug activity and improve treatment.


Assuntos
Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Nanopartículas/administração & dosagem , Neoplasias , Bicarbonato de Sódio/administração & dosagem , Animais , Antineoplásicos/farmacocinética , Transporte Biológico/efeitos dos fármacos , Contagem de Células , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacocinética , Feminino , Humanos , Concentração de Íons de Hidrogênio , Lipossomos , Camundongos Endogâmicos BALB C , Neoplasias/química , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/metabolismo , Bicarbonato de Sódio/farmacocinética , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
4.
J Control Release ; 293: 215-223, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30527755

RESUMO

The rapid development of biomimetic cell membrane-based nanoparticles is still overshadowed by many practical challenges, one of which is the difficulty to precisely measure the biodistribution of such nanoparticles. Currently, this challenge is mostly addressed using fluorescent techniques with limited sensitivity, or radioactive labeling methods, which rarely account for the nanoparticles themselves, but their payloads instead. Here we report the development of a robust method for the innate radioactive labeling of cells and membrane-based nanoparticles and their consequent sensitive detection and biodistribution measurements. The preclinical potential of this method was demonstrated with Nano-Ghosts (NGs), manufactured from the cytoplasmic membranes of mesenchymal stem cells cultured with radioactively-labeled linoleic acid and achieving a cell labeling efficiency of 36%. Radiolabeling did not affect the physiochemical properties of the NGs, which stably retained their radiolabels. Using radioactivity measurements, we are now able to determine precisely the amount of NGs uptaken by tissues and cells, thereby providing further support to our presumed active NG targeting mechanisms. Biodistribution studies comparing radiolabeled NGs to fluorescently-labeled ones have validated our method and revealed new information, which could not be obtained otherwise, regarding the NGs' unique kinetics and rapid clearance, supporting their excellent safety profiles. The reported approach may be expanded to other membrane-based entities to facilitate and hasten their preclinical development and be used in parallel with other labeling methods to provide different and additional information.


Assuntos
Membrana Celular , Células-Tronco Mesenquimais , Nanoestruturas/administração & dosagem , Células A549 , Animais , Radioisótopos de Carbono , Humanos , Ácido Linoleico/administração & dosagem , Masculino , Camundongos Endogâmicos C57BL , Camundongos Nus , Distribuição Tecidual
5.
J Infect Dis ; 215(10): 1599-1607, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28329302

RESUMO

To address the need for novel alternatives to antibiotics, we attempted to sensitize gram-negative bacilli to innate antibacterial protagonists. We report a lipopeptide-like sequence (C10OOc12O) that inflicted outer membrane damage at a low micromolar range, whereas measurable bacterial growth inhibition in broth medium required >10-fold higher concentrations. In serum, however, C10OOc12O induced antibacterial activity in a manner suppressible by anticomplement antibodies or heat treatment and acted synergistically with exogenous lysozyme in broth and serum media. Upon subcutaneous administration, C10OOc12O exhibited high circulating levels that correlated with significant therapeutic efficacies, using either the mouse peritonitis-sepsis model or the thigh infection model. These findings are consistent with the view that, by damaging the outer membrane, C10OOc12O was able to enhance gram-negative bacilli susceptibility to antibacterial components of the immune humoral arm. Such lipopeptides may therefore be useful in fighting gram-negative bacilli threats through sensitization to endogenous and/or exogenous antibacterial proteins such as lysozyme and complements.


Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/patogenicidade , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Lipopeptídeos/farmacologia , Animais , Peptídeos Catiônicos Antimicrobianos/farmacologia , Membrana Celular/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/microbiologia , Interações Hospedeiro-Patógeno/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Testes de Sensibilidade Microbiana , Modelos Biológicos
6.
Nano Lett ; 16(3): 1574-82, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26901695

RESUMO

Nanoghosts derived from mesenchymal stem cells and retaining their unique surface-associated tumor-targeting capabilities were redesigned as a selective and safe universal nonviral gene-therapy platform. pDNA-loaded nanoghosts efficiently targeted and transfected diverse cancer cells, in vitro and in vivo, in subcutaneous and metastatic orthotopic tumor models, leading to no adverse effects. Nanoghosts loaded with pDNA encoding for a cancer-toxic gene inhibited the growth of metastatic orthotopic lung cancer and subcutaneous prostate cancer models and dramatically prolonged the animals' survival.


Assuntos
DNA/administração & dosagem , Técnicas de Transferência de Genes , Terapia Genética , Neoplasias Pulmonares/terapia , Células-Tronco Mesenquimais , Nanoestruturas , Neoplasias da Próstata/terapia , Animais , Linhagem Celular Tumoral , DNA/genética , DNA/uso terapêutico , Humanos , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos Endogâmicos C57BL , Nanoestruturas/administração & dosagem , Nanoestruturas/efeitos adversos , Nanoestruturas/ultraestrutura , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Metástase Neoplásica/terapia , Plasmídeos/administração & dosagem , Plasmídeos/genética , Plasmídeos/uso terapêutico , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia
7.
Biochim Biophys Acta ; 1858(5): 995-1003, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26522076

RESUMO

Bacterial resistance to antibiotics is recognized as one of the greatest threats in modern healthcare, taking a staggering toll worldwide. New approaches for controlling bacterial infections must be designed, eventually combining multiple strategies for complimentary therapies. This review explores an old/new paradigm for multi-targeted antibacterial therapy, focused at disturbing bacterial cytoplasmic membrane functions at sub minimal inhibitory concentrations, namely through superficial physical alterations of the bilayer, thereby perturbing transmembrane signals transduction. Such a paradigm may have the advantage of fighting the infection while avoiding many of the known resistance mechanisms. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Membrana Celular/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Prótons , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Membrana Celular/química , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Bactérias Gram-Negativas/química , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/química , Bactérias Gram-Positivas/metabolismo , Humanos , Potenciais da Membrana/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Percepção de Quorum/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
8.
Sci Rep ; 5: 9216, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25782773

RESUMO

While individually inefficient against Gram-negative bacteria, in-vitro combinations of rifampin and OAK were mutually synergistic since sub-minimal inhibitory concentrations of one compound have potentiated the other by 2-4 orders of magnitude. Synergy persisted in-vivo as single-dose systemic treatment of Klebsiella infected mice resulted in 10-20% versus 60% survival, respectively accomplished by individual and combined compounds. This outcome was achieved without drug formulation, rather, pharmacokinetic considerations have inspired the therapeutic regimen.


Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Oligopeptídeos/farmacologia , Rifampina/farmacologia , Animais , Antibacterianos/uso terapêutico , Sinergismo Farmacológico , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/microbiologia , Infecções por Bactérias Gram-Positivas/veterinária , Klebsiella/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Testes de Sensibilidade Microbiana , Oligopeptídeos/síntese química , Oligopeptídeos/uso terapêutico , Rifampina/uso terapêutico
9.
FASEB J ; 27(12): 4834-43, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23970798

RESUMO

In previous studies, the oligo-acyl-lysyl (OAK) C12(ω7)K-ß12 added to cultures of gram-positive bacteria exerted a bacteriostatic activity that was associated with membrane depolarization, even at high concentrations. Here, we report that multidrug-resistant Staphylococcus aureus strains, unlike other gram-positive species, have reverted to the sensitive phenotype when exposed to subminimal inhibitory concentrations (sub-MICs) of the OAK, thereby increasing antibiotics potency by up to 3 orders of magnitude. Such chemosensitization was achieved using either cytoplasm or cell-wall targeting antibiotics. Moreover, eventual emergence of resistance to antibiotics was significantly delayed. Using the mouse peritonitis-sepsis model, we show that on single-dose administration of oxacillin and OAK combinations, death induced by a lethal staphylococcal infection was prevented in a synergistic manner, thereby supporting the likelihood for synergism to persist under in vivo conditions. Toward illuminating the molecular basis for these observations, we present data arguing that sub-MIC OAK interactions with the plasma membrane can inhibit proton-dependent signal transduction responsible for expression and export of resistance factors, as demonstrated for ß-lactamase and PBP2a. Collectively, the data reveal a potentially useful approach for overcoming antibiotic resistance and for preventing resistance from emerging as readily as when bacteria are exposed to an antibiotic alone.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Oligopeptídeos/farmacologia , Oxacilina/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Animais , Antibacterianos/administração & dosagem , Antibacterianos/síntese química , Antibacterianos/uso terapêutico , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Sinergismo Farmacológico , Masculino , Camundongos , Camundongos Endogâmicos ICR , Oligopeptídeos/administração & dosagem , Oligopeptídeos/síntese química , Oligopeptídeos/uso terapêutico , Oxacilina/administração & dosagem , Oxacilina/uso terapêutico , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Peritonite/tratamento farmacológico , Fatores R/efeitos dos fármacos , Sepse/tratamento farmacológico , Transdução de Sinais , Staphylococcus aureus/metabolismo , Transcrição Gênica , beta-Lactamases/genética , beta-Lactamases/metabolismo
10.
Yeast ; 27(12): 999-1003, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20632298

RESUMO

Here we describe a new procedure for ascospore isolation from cultures containing a majority of unsporulated vegetative cells of Saccharomyces cerevisiae. The EZ ascospore isolation procedure relies on the combination of two conventional protocols, diethyl ether treatment and modified zymolyase treatment, allowing a significant increase in the efficiency of ascospore isolation and consequently enabling a large number of meiotic offspring to be efficiently obtained and screened, thus improving the efficacy of genetic research and the genetic selection of S. cerevisiae strains.


Assuntos
Hidrolases/metabolismo , Micologia/métodos , Saccharomyces cerevisiae/isolamento & purificação , Microbiologia do Solo , Esporos Fúngicos/isolamento & purificação , Éter/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...